
0

PROGRAMMING IN HASKELL

Chapter 10 - Interactive Programming

Introduction

1

To date, we have seen how Haskell can be used to
write batch programs that take all their inputs at
the start and give all their outputs at the end.

batch
program

inputs outputs

2

However, we would also like to use Haskell to write
interactive programs that read from the keyboard
and write to the screen, as they are running.

interactive
program

inputs outputs

keyboard

screen

The Problem

3

Haskell programs are pure mathematical functions:

However, reading from the keyboard and writing
to the screen are side effects:

z Haskell programs have no side effects.

z Interactive programs have side effects.

The Solution

4

Interactive programs can be written in Haskell by
using types to distinguish pure expressions from
impure actions that may involve side effects.

IO a

The type of actions that
return a value of type a.

5

For example:

IO Char

IO ()

The type of actions that
return a character.

The type of purely side
effecting actions that
return no result value.

z () is the type of tuples with no components.

Note:

Basic Actions

6

The standard library provides a number of actions,
including the following three primitives:

getChar :: IO Char

z The action getChar reads a character from the
keyboard, echoes it to the screen, and returns
the character as its result value:

7

z The action putChar c writes the character c to
the screen, and returns no result value:

putChar :: Char  IO ()

z The action return v simply returns the value v,
without performing any interaction:

return :: a  IO a

Sequencing

8

A sequence of actions can be combined as a single
composite action using the keyword do.

For example:

act :: IO (Char,Char)

act = do x  getChar

getChar

y  getChar

return (x,y)

Derived Primitives

9

getLine :: IO String

getLine = do x  getChar

if x == '\n' then

return []

else

do xs  getLine

return (x:xs)

z Reading a string from the keyboard:

10

putStr :: String  IO ()

putStr [] = return ()

putStr (x:xs) = do putChar x

putStr xs

z Writing a string to the screen:

z Writing a string and moving to a new line:

putStrLn :: String  IO ()

putStrLn xs = do putStr xs

putChar '\n'

Example

11

We can now define an action that prompts for a
string to be entered and displays its length:

strlen :: IO ()

strlen = do putStr "Enter a string: "

xs  getLine

putStr "The string has "

putStr (show (length xs))

putStrLn " characters"

12

For example:

> strlen

Enter a string: Haskell

The string has 7 characters

z Evaluating an action executes its side effects,
with the final result value being discarded.

Note:

Hangman

13

Consider the following version of hangman:

z One player secretly types in a word.

z The other player tries to deduce the word, by
entering a sequence of guesses.

z For each guess, the computer indicates which
letters in the secret word occur in the guess.

14

z The game ends when the guess is correct.

hangman :: IO ()

hangman = do putStrLn "Think of a word: "

word  sgetLine

putStrLn "Try to guess it:"

play word

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

15

The action sgetLine reads a line of text from the
keyboard, echoing each character as a dash:

sgetLine :: IO String

sgetLine = do x  getCh

if x == '\n' then

do putChar x

return []

else

do putChar '-'

xs  sgetLine

return (x:xs)

16

import System.IO

getCh :: IO Char

getCh = do hSetEcho stdin False

x  getChar

hSetEcho stdin True

return x

The action getCh reads a single character from the
keyboard, without echoing it to the screen:

17

The function play is the main loop, which requests
and processes guesses until the game ends.

play :: String  IO ()

play word =

do putStr "? "

guess  getLine

if guess == word then

putStrLn "You got it!"

else

do putStrLn (match word guess)

play word

18

The function match indicates which characters in
one string occur in a second string:

For example:

> match "haskell" "pascal"

"-as--ll"

match :: String  String  String

match xs ys =

[if elem x ys then x else '-' | x  xs]

Exercise

19

Implement the game of nim in Haskell, where the
rules of the game are as follows:

z The board comprises five rows of stars:

1: * * * * *

2: * * * *

3: * * *

4: * *

5: *

20

z Two players take it turn about to remove one
or more stars from the end of a single row.

z The winner is the player who removes the last
star or stars from the board.

Hint:

Represent the board as a list of five integers that
give the number of stars remaining on each row.
For example, the initial board is [5,4,3,2,1].

