
0

PROGRAMMING IN HASKELL

Chapter 3 - Types and Classes

What is a Type?

1

A type is a name for a collection of related values.
For example, in Haskell the basic type

TrueFalse

Bool

contains the two logical values:

Type Errors

2

Applying a function to one or more arguments of
the wrong type is called a type error.

> 1 + False

error ...

1 is a number and False is a logical
value, but + requires two numbers.

Types in Haskell

• If evaluating an expression e would produce a value of type t,
then e has type t, written

3

e :: t

z Every well formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference.

4

z All type errors are found at compile time, which
makes programs safer and faster by removing
the need for type checks at run time.

z In GHCi, the :type command calculates the type
of an expression, without evaluating it:

> not False

True

> :type not False

not False :: Bool

Basic Types

5

Haskell has a number of basic types, including:

Bool - logical values

Char - single characters

Integer - arbitrary-precision integers

Float - floating-point numbers

String - strings of characters

Int - fixed-precision integers

List Types

6

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

A list is sequence of values of the same type:

[t] is the type of lists with elements of type t.

7

z The type of a list says nothing about its length:

[False,True] :: [Bool]

[False,True,False] :: [Bool]

[[’a’],[’b’,’c’]] :: [[Char]]

Note:

z The type of the elements is unrestricted. For
example, we can have lists of lists:

Tuple Types

8

A tuple is a sequence of values of different types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1,t2,…,tn) is the type of n-tuples whose ith
components have type ti for any i in 1…n.

9

z The type of a tuple encodes its size:

(False,True) :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’]) :: (Bool,[Char])

Note:

z The type of the components is unrestricted:

Function Types

10

not :: Bool Bool

even :: Int Bool

In general:

A function is a mapping from values of one type
to values of another type:

t1 t2 is the type of functions that map
values of type t1 to values to type t2.

11

z The arrow is typed at the keyboard as ->.

z The argument and result types are unrestricted.
For example, functions with multiple arguments
or results are possible using lists or tuples:

Note:

add :: (Int,Int) Int

add (x,y) = x+y

zeroto :: Int [Int]

zeroto n = [0..n]

Curried Functions

12

Functions with multiple arguments are also possible
by returning functions as results:

add’ :: Int (Int Int)

add’ x y = x+y

add’ takes an integer x and returns a
function add’ x. In turn, this function takes

an integer y and returns the result x+y.

13

z add and add’ produce the same final result, but
add takes its two arguments at the same time,
whereas add’ takes them one at a time:

Note:

z Functions that take their arguments one at a
time are called curried functions, celebrating
the work of Haskell Curry on such functions.

add :: (Int,Int) Int

add’ :: Int (Int Int)

14

z Functions with more than two arguments can be
curried by returning nested functions:

mult :: Int (Int (Int Int))

mult x y z = x*y*z

mult takes an integer x and returns a function
mult x, which in turn takes an integer y and

returns a function mult x y, which finally takes
an integer z and returns the result x*y*z.

Why is Currying Useful?

15

Curried functions are more flexible than functions
on tuples, because useful functions can often be
made by partially applying a curried function.

For example:

add’ 1 :: Int Int

take 5 :: [Int] [Int]

drop 5 :: [Int] [Int]

Currying Conventions

• The arrow associates to the right.

16

Int Int Int Int

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

Means Int (Int (Int Int)).

17

z As a consequence, it is then natural for function
application to associate to the left.

mult x y z

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions in
Haskell are normally defined in curried form.

Polymorphic Functions

18

A function is called polymorphic (“of many forms”)
if its type contains one or more type variables.

length :: [a] Int

For any type a, length takes a list of
values of type a and returns an integer.

19

z Type variables can be instantiated to different
types in different circumstances:

Note:

z Type variables must begin with a lower-case
letter, and are usually named a, b, c, etc.

> length [False,True]

2

> length [1,2,3,4]

4

a = Bool

a = Int

20

z Many of the functions defined in the standard
prelude are polymorphic. For example:

fst :: (a,b) a

head :: [a] a

take :: Int [a] [a]

zip :: [a] [b] [(a,b)]

id :: a a

Overloaded Functions

21

A polymorphic function is called overloaded if its
type contains one or more class constraints.

(+) :: Num a a -> a -> a

For any numeric type a, (+) takes two values
of type a and returns a value of type a.

22

z Constrained type variables can be instantiated to
any types that satisfy the constraints:

Note:

> 1 + 2

3

> 1.0 + 2.0

3.0

> ’a’ + ’b’

ERROR

Char is not a
numeric type

a = Int

a = Float

23

Num - Numeric types

Eq - Equality types

Ord - Ordered types

z Haskell has a number of type classes, including:

z For example:

(+) :: Num a a a a

(==) :: Eq a a a Bool

(<) :: Ord a a a Bool

Hints and Tips

• When defining a new function in Haskell, it is useful to begin by
writing down its type;

• Within a script, it is good practice to state the type of every new
function defined;

• When stating the types of polymorphic functions that use
numbers, equality or orderings, take care to include the necessary
class constraints.

24

Exercises

25

[’a’,’b’,’c’]

(’a’,’b’,’c’)

[(False,’0’),(True,’1’)]

([False,True],[’0’,’1’])

[tail,init,reverse]

What are the types of the following values?(1)

26

second xs = head (tail xs)

swap (x,y) = (y,x)

pair x y = (x,y)

double x = x*2

palindrome xs = reverse xs == xs

twice f x = f (f x)

What are the types of the following functions?(2)

Check your answers using GHCi.(3)

