
0

PROGRAMMING IN HASKELL

Chapter 4 - Defining Functions

Conditional Expressions

1

As in most programming languages, functions can
be defined using conditional expressions.

abs :: Int Int

abs n = if n ≥ 0 then n else -n

abs takes an integer n and returns n if it
is non-negative and -n otherwise.

2

Conditional expressions can be nested:

signum :: Int Int

signum n = if n < 0 then -1 else

if n == 0 then 0 else 1

z In Haskell, conditional expressions must always
have an else branch, which avoids any possible
ambiguity problems with nested conditionals.

Note:

Guarded Equations

3

As an alternative to conditionals, functions can also
be defined using guarded equations.

abs n | n ≥ 0 = n

| otherwise = -n

As previously, but using guarded equations.

4

Guarded equations can be used to make definitions
involving multiple conditions easier to read:

z The catch all condition otherwise is defined in
the prelude by otherwise = True.

Note:

signum n | n < 0 = -1

| n == 0 = 0

| otherwise = 1

Pattern Matching

5

Many functions have a particularly clear definition
using pattern matching on their arguments.

not :: Bool Bool

not False = True

not True = False

not maps False to True, and True to False.

6

Functions can often be defined in many different
ways using pattern matching. For example

(&&) :: Bool Bool Bool

True && True = True

True && False = False

False && True = False

False && False = False

True && True = True

_ && _ = False

can be defined more compactly by

7

True && b = b

False && _ = False

However, the following definition is more efficient,
because it avoids evaluating the second argument
if the first argument is False:

z The underscore symbol _ is a wildcard pattern
that matches any argument value.

Note:

8

z Patterns may not repeat variables. For example,
the following definition gives an error:

b && b = b

_ && _ = False

z Patterns are matched in order. For example, the
following definition always returns False:

_ && _ = False

True && True = True

List Patterns

9

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons” that
adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[]))).

10

Functions on lists can be defined using x:xs patterns.

head :: [a] a

head (x:_) = x

tail :: [a] [a]

tail (_:xs) = xs

head and tail map any non-empty list to
its first and remaining elements.

11

Note:

z x:xs patterns must be parenthesised, because
application has priority over (:). For example,
the following definition gives an error:

z x:xs patterns only match non-empty lists:

> head []

*** Exception: empty list

head x:_ = x

Lambda Expressions

12

Functions can be constructed without naming the
functions by using lambda expressions.

x x + x

the nameless function that takes a
number x and returns the result x + x.

13

z The symbol is the Greek letter lambda, and is
typed at the keyboard as a backslash \.

z In mathematics, nameless functions are usually
denoted using the symbol, as in x x + x.

z In Haskell, the use of the symbol for nameless
functions comes from the lambda calculus, the
theory of functions on which Haskell is based.

Note:

Why Are Lambda's Useful?

14

Lambda expressions can be used to give a formal
meaning to functions defined using currying.

For example:

add x y = x + y

add = x (y x + y)

means

15

const :: a b a

const x _ = x

is more naturally defined by

const :: a (b a)

const x = _ x

Lambda expressions are also useful when defining
functions that return functions as results.

For example:

16

odds n = map f [0..n-1]

where

f x = x*2 + 1

can be simplified to

odds n = map (x x*2 + 1) [0..n-1]

Lambda expressions can be used to avoid naming
functions that are only referenced once.

For example:

Operator Sections

17

An operator written between its two arguments can
be converted into a curried function written before
its two arguments by using parentheses.

For example:

> 1+2

3

> (+) 1 2

3

18

This convention also allows one of the arguments
of the operator to be included in the parentheses.

For example:

> (1+) 2

3

> (+2) 1

3

In general, if is an operator then functions of the
form (), (x) and (y) are called sections.

Why Are Sections Useful?

19

Useful functions can sometimes be constructed in
a simple way using sections. For example:

- successor function

- reciprocation function

- doubling function

- halving function

(1+)

(*2)

(/2)

(1/)

Exercises

20

Consider a function safetail that behaves in the
same way as tail, except that safetail maps the
empty list to the empty list, whereas tail gives
an error in this case. Define safetail using:

(a) a conditional expression;
(b) guarded equations;
(c) pattern matching.

Hint: the library function null :: [a] Bool can
be used to test if a list is empty.

(1)

21

Give three possible definitions for the logical
or operator (||) using pattern matching.

(2)

Redefine the following version of (&&) using
conditionals rather than patterns:

(3)

True && True = True

_ && _ = False

Do the same for the following version:(4)

True && b = b

False && _ = False

