
0

PROGRAMMING IN HASKELL

Chapter 6 - Recursive Functions

Introduction

1

As we have seen, many functions can naturally be
defined in terms of other functions.

fac :: Int Int

fac n = product [1..n]

fac maps any integer n to the product
of the integers between 1 and n.

2

Expressions are evaluated by a stepwise process of
applying functions to their arguments.

For example:

fac 4

product [1..4]

=

product [1,2,3,4]

=

1*2*3*4

=

24

=

Recursive Functions

3

In Haskell, functions can also be defined in terms of
themselves. Such functions are called recursive.

fac 0 = 1

fac n = n * fac (n-1)

fac maps 0 to 1, and any other
integer to the product of itself and

the factorial of its predecessor.

4

For example:

fac 3

3 * fac 2

=

3 * (2 * fac 1)

=

3 * (2 * (1 * fac 0))

=

3 * (2 * (1 * 1))

=

3 * (2 * 1)

=

=
6

3 * 2

=

5

Note:

z fac 0 = 1 is appropriate because 1 is the identity
for multiplication: 1*x = x = x*1.

z The recursive definition diverges on integers 0
because the base case is never reached:

> fac (-1)

*** Exception: stack overflow

Why is Recursion Useful?

• Some functions, such as factorial, are simpler to define in terms
of other functions.

• As we shall see, however, many functions can naturally be defined
in terms of themselves.

• Properties of functions defined using recursion can be proved
using the simple but powerful mathematical technique of
induction.

6

Recursion on Lists

7

Recursion is not restricted to numbers, but can also
be used to define functions on lists.

product :: Num a [a] a

product [] = 1

product (n:ns) = n * product ns

product maps the empty list to 1,
and any non-empty list to its head
multiplied by the product of its tail.

8

For example:

product [2,3,4]

2 * product [3,4]

=

2 * (3 * product [4])

=

2 * (3 * (4 * product []))

=

2 * (3 * (4 * 1))

=

24

=

9

Using the same pattern of recursion as in product
we can define the length function on lists.

length :: [a] Int

length [] = 0

length (_:xs) = 1 + length xs

length maps the empty list to 0,
and any non-empty list to the

successor of the length of its tail.

10

For example:

length [1,2,3]

1 + length [2,3]

=

1 + (1 + length [3])

=

1 + (1 + (1 + length []))

=

1 + (1 + (1 + 0))

=

3

=

11

Using a similar pattern of recursion we can define
the reverse function on lists.

reverse :: [a] [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

reverse maps the empty list to the empty
list, and any non-empty list to the reverse

of its tail appended to its head.

12

For example:

reverse [1,2,3]

reverse [2,3] ++ [1]

=

(reverse [3] ++ [2]) ++ [1]

=

((reverse [] ++ [3]) ++ [2]) ++ [1]

=

(([] ++ [3]) ++ [2]) ++ [1]

=

[3,2,1]

=

Multiple Arguments

13

Functions with more than one argument can also
be defined using recursion. For example:

z Zipping the elements of two lists:

zip :: [a] [b] [(a,b)]

zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

14

drop :: Int [a] [a]

drop 0 xs = xs

drop _ [] = []

drop n (_:xs) = drop (n-1) xs

z Remove the first n elements from a list:

(++) :: [a] [a] [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

z Appending two lists:

Quicksort

15

The quicksort algorithm for sorting a list of values
can be specified by the following two rules:

z The empty list is already sorted;

z Non-empty lists can be sorted by sorting the
tail values the head, sorting the tail values
the head, and then appending the resulting
lists on either side of the head value.

16

Using recursion, this specification can be translated
directly into an implementation:

qsort :: Ord a [a] [a]

qsort [] = []

qsort (x:xs) =

qsort smaller ++ [x] ++ qsort larger

where

smaller = [a | a xs, a x]

larger = [b | b xs, b x]

z This is probably the simplest implementation of
quicksort in any programming language!

Note:

17

For example (abbreviating qsort as q):

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]

Exercises

18

(1) Without looking at the standard prelude, define
the following library functions using recursion:

and :: [Bool] Bool

z Decide if all logical values in a list are true:

concat :: [[a]] [a]

z Concatenate a list of lists:

19

(!!) :: [a] Int a

z Select the nth element of a list:

elem :: Eq a a [a] Bool

z Decide if a value is an element of a list:

replicate :: Int a [a]

z Produce a list with n identical elements:

20

(2) Define a recursive function

merge :: Ord a [a] [a] [a]

that merges two sorted lists of values to give
a single sorted list. For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]

21

(3) Define a recursive function

z Lists of length 1 are already sorted;

z Other lists can be sorted by sorting the two
halves and merging the resulting lists.

msort :: Ord a [a] [a]

that implements merge sort, which can be
specified by the following two rules:

