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PROGRAMMING IN HASKELL

Chapter 6 - Recursive Functions



Introduction
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As we have seen, many functions can naturally be 
defined in terms of other functions.

fac :: Int  Int

fac n = product [1..n]

fac maps any integer n to the product 
of the integers between 1 and n.



2

Expressions are evaluated by a stepwise process of 
applying functions to their arguments.

For example:

fac 4

product [1..4]

=

product [1,2,3,4]

=

1*2*3*4

=

24

=



Recursive Functions
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In Haskell, functions can also be defined in terms of 
themselves.  Such functions are called recursive.

fac 0 = 1

fac n = n * fac (n-1)

fac maps 0 to 1, and any other 
integer to the product of itself and 

the factorial of its predecessor.
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For example:

fac 3

3 * fac 2

=

3 * (2 * fac 1)

=

3 * (2 * (1 * fac 0))

=

3 * (2 * (1 * 1))

=

3 * (2 * 1)

=

=
6

3 * 2

=
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Note:

z fac 0 = 1 is appropriate because 1 is the identity 
for multiplication: 1*x = x = x*1.

z The recursive definition diverges on integers  0 
because the base case is never reached:

> fac (-1)

*** Exception: stack overflow



Why is Recursion Useful?

• Some functions, such as factorial, are simpler to define in terms 
of other functions.

• As we shall see, however, many functions can naturally be defined 
in terms of themselves.

• Properties of functions defined using recursion can be proved 
using the simple but powerful mathematical technique of 
induction.

6



Recursion on Lists
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Recursion is not restricted to numbers, but can also 
be used to define functions on lists.

product :: Num a  [a]  a

product []     = 1

product (n:ns) = n * product ns

product maps the empty list to 1, 
and any non-empty list to its head 
multiplied by the product of its tail.
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For example:

product [2,3,4]

2 * product [3,4]

=

2 * (3 * product [4])

=

2 * (3 * (4 * product []))

=

2 * (3 * (4 * 1))

=

24

=
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Using the same pattern of recursion as in product 
we can define the length function on lists.

length :: [a]  Int

length []     = 0

length (_:xs) = 1 + length xs

length maps the empty list to 0, 
and any non-empty list to the 

successor of the length of its tail.
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For example:

length [1,2,3]

1 + length [2,3]

=

1 + (1 + length [3])

=

1 + (1 + (1 + length []))

=

1 + (1 + (1 + 0))

=

3

=
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Using a similar pattern of recursion we can define 
the reverse function on lists.

reverse :: [a]  [a]

reverse []     = []

reverse (x:xs) = reverse xs ++ [x]

reverse maps the empty list to the empty 
list, and any non-empty list to the reverse 

of its tail appended to its head.



12

For example:

reverse [1,2,3]

reverse [2,3] ++ [1]

=

(reverse [3] ++ [2]) ++ [1]

=

((reverse [] ++ [3]) ++ [2]) ++ [1]

=

(([] ++ [3]) ++ [2]) ++ [1]

=

[3,2,1]

=



Multiple Arguments
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Functions with more than one argument can also 
be defined using recursion.  For example:

z Zipping the elements of two lists:

zip :: [a]  [b]  [(a,b)]

zip []     _      = []

zip _      []     = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys
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drop :: Int  [a]  [a]

drop 0 xs = xs

drop _ []     = []

drop n (_:xs) = drop (n-1) xs

z Remove the first n elements from a list:

(++) :: [a]  [a]  [a]

[]     ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

z Appending two lists:



Quicksort
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The quicksort algorithm for sorting a list of values 
can be specified by the following two rules:

z The empty list is already sorted;

z Non-empty lists can be sorted by sorting the 
tail values  the head, sorting the tail values 
the head, and then appending the resulting 
lists on either side of the head value.
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Using recursion, this specification can be translated 
directly into an implementation:

qsort :: Ord a  [a]  [a]

qsort []     = []

qsort (x:xs) =

qsort smaller ++ [x] ++ qsort larger

where

smaller = [a | a  xs, a  x]

larger  = [b | b  xs, b  x]

z This is probably the simplest implementation of 
quicksort in any programming language!

Note:
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For example (abbreviating qsort as q):

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]



Exercises
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(1) Without looking at the standard prelude, define 
the following library functions using recursion:

and :: [Bool]  Bool

z Decide if all logical values in a list are true:

concat :: [[a]]  [a]

z Concatenate a list of lists:
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(!!) :: [a]  Int  a

z Select the nth element of a list:

elem :: Eq a  a  [a]  Bool

z Decide if a value is an element of a list:

replicate :: Int  a  [a]

z Produce a list with n identical elements:
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(2) Define a recursive function

merge :: Ord a  [a]  [a]  [a]

that merges two sorted lists of values to give 
a single sorted list.  For example:

> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]
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(3) Define a recursive function

z Lists of length  1 are already sorted;

z Other lists can be sorted by sorting the two 
halves and merging the resulting lists. 

msort :: Ord a  [a]  [a]

that implements merge sort, which can be 
specified by the following two rules:


