PROGRAMMING IN HASKELL

Chapter 7 - Higher-Order Functions

Introduction

A function is called higher-order if it takes a function as an argument or returns a function as a result.

```
twice :: (a }->\mathrm{ a) }->\mathrm{ a }->\mathrm{ a
twice f x = f (f x)
```

twice is higher-order because it takes a function as its first argument.

Why Are They Useful?

z Common programming idioms can be encoded as functions within the language itself.
z Domain specific languages can be defined as collections of higher-order functions.
z Algebraic properties of higher-order functions can be used to reason about programs.

The Map Function

The higher-order library function called map applies a function to every element of a list.

$$
\text { map }::(\mathrm{a} \rightarrow \mathrm{~b}) \rightarrow[\mathrm{a}] \rightarrow[\mathrm{b}]
$$

For example:

$$
\begin{aligned}
& >\operatorname{map}(+1) \quad[1,3,5,7] \\
& {[2,4,6,8]}
\end{aligned}
$$

The map function can be defined in a particularly simple manner using a list comprehension:

$$
\operatorname{map} f x s=[f x \mid x \leftarrow x s]
$$

Alternatively, for the purposes of proofs, the map function can also be defined using recursion:

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

The Filter Function

The higher-order library function filter selects every element from a list that satisfies a predicate.

$$
\text { filter }::(a \rightarrow B o o l) \rightarrow[a] \rightarrow[a]
$$

For example:

$$
\begin{aligned}
& >\text { filter even [1..10] } \\
& {[2,4,6,8,10]}
\end{aligned}
$$

Filter can be defined using a list comprehension:

$$
\text { filter } \mathrm{p} x \mathrm{x}=[\mathrm{x} \mid \mathrm{x} \leftarrow \mathrm{xs}, \mathrm{p} \mathrm{x}]
$$

Alternatively, it can be defined using recursion:

$$
\begin{aligned}
& \text { filter } \mathrm{p}[]=[] \\
& \text { filter } \mathrm{p}(\mathrm{x}: \mathrm{xs}) \\
& \quad \begin{array}{l}
\mathrm{p} x \quad= \\
\text { | otherwise }
\end{array}=\text { filter } \mathrm{p} \text { xs }
\end{aligned}
$$

The Foldr Function

A number of functions on lists can be defined using the following simple pattern of recursion:

$$
\begin{array}{ll}
f[] & =v \\
f(x: x s) & =x \oplus f x s
\end{array}
$$

f maps the empty list to some value v , and any non-empty list to some function \oplus applied to its head and fof its tail.

For example:

```
sum [] = 0
sum (x:xs) = x + sum xs
```

$$
\begin{aligned}
& V=0 \\
& \oplus=+
\end{aligned}
$$

```
product [] = 1
product (x:xs) = x * product xs
```

$$
\begin{aligned}
& V=1 \\
& \oplus=\%
\end{aligned}
$$

and [] = True
and $(x: x s)=x$ \&\& and $x s$

The higher-order library function foldr (fold right) encapsulates this simple pattern of recursion, with the function \oplus and the value v as arguments.

For example:

$$
\begin{aligned}
& \text { sum }=\text { foldr (+) } 0 \\
& \text { product }=\text { foldr (*) } 1 \\
& \text { or }=\text { foldr (||) False } \\
& \text { and }=\text { foldr (\&\&) True }
\end{aligned}
$$

Foldr itself can be defined using recursion:

$$
\begin{aligned}
& \text { foldr :: }(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow[a] \rightarrow b \\
& \text { foldr } f \vee[]=v \\
& \text { foldr } f \vee(x: x s)=f x(\text { foldr } f \vee x s)
\end{aligned}
$$

However, it is best to think of foldr non-recursively, as simultaneously replacing each (:) in a list by a given function, and [] by a given value.

For example:

For example:

Other Foldr Examples

Even though foldr encapsulates a simple pattern of recursion, it can be used to define many more functions than might first be expected.

Recall the length function:

$$
\begin{aligned}
\text { length : : [a] } & \rightarrow \text { Int } \\
\text { length [] } & =0 \\
\text { length (_: xs) } & =1+\text { length xs }
\end{aligned}
$$

For example:

$$
\text { 1ength }=\text { foldr }\left(\lambda_{-} n \rightarrow 1+n\right) 0
$$

Now recall the reverse function:

$$
\begin{array}{ll}
\operatorname{reverse}[] & =[] \\
\operatorname{reverse}(x: x s) & =\text { reverse } x s++[x]
\end{array}
$$

For example:

$$
\begin{aligned}
& \text { reverse }[1,2,3] \\
& \text { reverse }(1:(2:(3:[]))) \\
& (([]++[3])++[2])++[1] \\
& {[3,2,1]}
\end{aligned}
$$

Replace each (:) by $\lambda \mathrm{xxs} \rightarrow \mathrm{xs}++[\mathrm{x}]$ and [] by [].

Hence, we have:

$$
\text { reverse }=\text { foldr }(\lambda x \text { xs } \rightarrow x s++[x]) \text { [] }
$$

Finally, we note that the append function (++) has a particularly compact definition using foldr:

$$
(++y s)=\text { foldr (:) ys }
$$

Replace each (:) by (:) and
[] by ys.

Why Is Foldr Useful?

z Some recursive functions on lists, such as sum, are simpler to define using foldr.
z Properties of functions defined using foldr can be proved using algebraic properties of foldr, such as fusion and the banana split rule.
z Advanced program optimisations can be simpler if foldr is used in place of explicit recursion.

Other Library Functions

The library function (.) returns the composition of two functions as a single function.

$$
\begin{aligned}
& (.):(\mathrm{b} \rightarrow \mathrm{c}) \rightarrow(\mathrm{a} \rightarrow \mathrm{~b}) \rightarrow(\mathrm{a} \rightarrow \mathrm{c}) \\
& \mathrm{f} . \mathrm{g}=\lambda \mathrm{x} \rightarrow \mathrm{f}(\mathrm{~g} x)
\end{aligned}
$$

For example:

$$
\begin{aligned}
& \text { odd }:: \text { Int } \rightarrow \text { Bool } \\
& \text { odd }=\text { not } . \text { even }
\end{aligned}
$$

The library function all decides if every element of a list satisfies a given predicate.

$$
\begin{aligned}
& \text { a11 }::(\mathrm{a} \rightarrow \text { Bool }) \rightarrow[\mathrm{a}] \rightarrow \text { Bool } \\
& \text { a11 } \mathrm{p} \times \mathrm{x}=\text { and }[\mathrm{p} \times \mid \mathrm{x} \leftarrow \mathrm{xs}]
\end{aligned}
$$

For example:

$$
\text { > all even }[2,4,6,8,10]
$$

True

Dually, the library function any decides if at least one element of a list satisfies a predicate.

$$
\begin{aligned}
& \text { any }::(\mathrm{a} \rightarrow \text { Bool }) \rightarrow[\mathrm{a}] \rightarrow \text { Bool } \\
& \text { any } \mathrm{p} \times \mathrm{s}=\text { or }[\mathrm{p}|\mathrm{x}| \mathrm{xs}]
\end{aligned}
$$

For example:
> any (==, ') "abc def"

True

The library function takeWhile selects elements from a list while a predicate holds of all the elements.

```
takeWhile :: (a }->\mathrm{ Bool) }->\mathrm{ [a] }->\mathrm{ [a]
takeWhile p [] = []
takeWhile p (x:xs)
    | p x = x : takeWhile p xs
    | otherwise = []
```

For example:

> > takeWhile $(/=$, ') "abc def"
> "abc"

Dually, the function dropWhile removes elements while a predicate holds of all the elements.

```
dropWhile :: (a }->\mathrm{ Bool) }->\mathrm{ [a] }->\mathrm{ [a]
dropWhile p [] = []
dropWhile p (x:xs)
    | p x = dropWhile p xs
    otherwise = x:xs
```

For example:

$$
\begin{aligned}
& \text { > dropWhile }(==, \quad \text { ' }) \text { " abc" } \\
& \text { "abc" }
\end{aligned}
$$

Exercises

(1) What are higher-order functions that return functions as results better known as?
(2) Express the comprehension [$\mathrm{fx} \mid \mathrm{x} \leftarrow \mathrm{xs}, \mathrm{px}$] using the functions map and filter.
(3) Redefine map fand filter pusing foldr.

