
0

PROGRAMMING IN HASKELL

Chapter 8 - Declaring Types and Classes

Type Declarations

1

In Haskell, a new name for an existing type can be
defined using a type declaration.

type String = [Char]

String is a synonym for the type [Char].

2

Type declarations can be used to make other types
easier to read. For example, given

origin :: Pos

origin = (0,0)

left :: Pos Pos

left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:

3

Like function definitions, type declarations can also
have parameters. For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int Int

mult (m,n) = m*n

copy :: a Pair a

copy x = (x,x)

4

Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])

Data Declarations

5

A completely new type can be defined by specifying
its values using a data declaration.

data Bool = False | True

Bool is a new type, with two
new values False and True.

6

Note:

z The two values False and True are called the
constructors for the type Bool.

z Type and constructor names must always begin
with an upper-case letter.

z Data declarations are similar to context free
grammars. The former specifies the values of
a type, the latter the sentences of a language.

7

answers :: [Answer]

answers = [Yes,No,Unknown]

flip :: Answer Answer

flip Yes = No

flip No = Yes

flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways
as those of built in types. For example, given

8

The constructors in a data declaration can also have
parameters. For example, given

data Shape = Circle Float

| Rect Float Float

square :: Float Shape

square n = Rect n n

area :: Shape Float

area (Circle r) = pi * r^2

area (Rect x y) = x * y

we can define:

9

Note:

z Shape has values of the form Circle r where r is
a float, and Rect x y where x and y are floats.

z Circle and Rect can be viewed as functions that
construct values of type Shape:

Circle :: Float Shape

Rect :: Float Float Shape

10

Not surprisingly, data declarations themselves can
also have parameters. For example, given

data Maybe a = Nothing | Just a

safediv :: Int Int Maybe Int

safediv _ 0 = Nothing

safediv m n = Just (m `div` n)

safehead :: [a] Maybe a

safehead [] = Nothing

safehead xs = Just (head xs)

we can define:

Recursive Types

11

In Haskell, new types can be declared in terms of
themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors
Zero :: Nat and Succ :: Nat Nat.

12

Note:

z A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains the
following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

13

z We can think of values of type Nat as natural
numbers, where Zero represents 0, and Succ
represents the successor function 1+.

z For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=

14

Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))

15

Two naturals can be added by converting them to
integers, adding, and then converting back:

However, using recursion the function add can be
defined without the need for conversions:

add :: Nat Nat Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero n = n

add (Succ m) n = Succ (add m n)

16

For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))

=

Succ (Succ (add Zero (Succ Zero))

=

Succ (Succ (Succ Zero))

=

Note:

z The recursive definition for add corresponds to
the laws 0+n = n and (1+m)+n = 1+(m+n).

Arithmetic Expressions

17

Consider a simple form of expressions built up from
integers using addition and multiplication.

1

+

32

18

Using recursion, a suitable new type to represent
such expressions can be declared by:

For example, the expression on the previous slide
would be represented as follows:

data Expr = Val Int

| Add Expr Expr

| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))

19

Using recursion, it is now easy to define functions
that process expressions. For example:

size :: Expr Int

size (Val n) = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

20

Note:

z The three constructors have types:

Val :: Int Expr

Add :: Expr Expr Expr

Mul :: Expr Expr Expr

z Many functions on expressions can be defined
by replacing the constructors by other functions
using a suitable fold function. For example:

eval = folde id (+) (*)

Binary Trees

21

In computing, it is often useful to store data in a
two-way branching structure or binary tree.

5

7

96

3

41

22

Using recursion, a suitable new type to represent
such binary trees can be declared by:

For example, the tree on the previous slide would
be represented as follows:

data Tree a = Leaf a

| Node (Tree a) a (Tree a)

t :: Tree Int

t = Node (Node (Leaf 1) 3 (Leaf 4)) 5

(Node (Leaf 6) 7 (Leaf 9))

23

We can now define a function that decides if a given
value occurs in a binary tree:

occurs :: Ord a a Tree a Bool

occurs x (Leaf y) = x == y

occurs x (Node l y r) = x == y

|| occurs x l

|| occurs x r

But… in the worst case, when the value does not
occur, this function traverses the entire tree.

24

Now consider the function flatten that returns the
list of all the values contained in a tree:

flatten :: Tree a [a]

flatten (Leaf x) = [x]

flatten (Node l x r) = flatten l

++ [x]

++ flatten r

A tree is a search tree if it flattens to a list that is
ordered. Our example tree is a search tree, as it
flattens to the ordered list [1,3,4,5,6,7,9].

25

Search trees have the important property that when
trying to find a value in a tree we can always decide
which of the two sub-trees it may occur in:

This new definition is more efficient, because it only
traverses one path down the tree.

occurs x (Leaf y) = x == y

occurs x (Node l y r) | x == y = True

| x < y = occurs x l

| x > y = occurs x r

Exercises

26

(1) Using recursion and the function add, define a
function that multiplies two natural numbers.

(2) Define a suitable function folde for expressions,
and give a few examples of its use.

(3) A binary tree is complete if the two sub-trees of
every node are of equal size. Define a function
that decides if a binary tree is complete.

