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PROGRAMMING IN HASKELL

Chapter 8 - Declaring Types and Classes



Type Declarations
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In Haskell, a new name for an existing type can be 
defined using a type declaration.

type String = [Char]

String is a synonym for the type [Char].
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Type declarations can be used to make other types 
easier to read.  For example, given

origin :: Pos

origin = (0,0)

left :: Pos  Pos

left (x,y) = (x-1,y)

type Pos = (Int,Int)

we can define:
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Like function definitions, type declarations can also 
have parameters.  For example, given

type Pair a = (a,a)

we can define:

mult :: Pair Int  Int

mult (m,n) = m*n

copy :: a  Pair a

copy x = (x,x)
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Type declarations can be nested:

type Pos = (Int,Int)

type Trans = Pos  Pos

However, they cannot be recursive:

type Tree = (Int,[Tree])



Data Declarations
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A completely new type can be defined by specifying 
its values using a data declaration.

data Bool = False | True

Bool is a new type, with two 
new values False and True.
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Note:

z The two values False and True are called the 
constructors for the type Bool.

z Type and constructor names must always begin 
with an upper-case letter.

z Data declarations are similar to context free 
grammars.  The former specifies the values of 
a type, the latter the sentences of a language.
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answers :: [Answer]

answers = [Yes,No,Unknown]

flip :: Answer  Answer

flip Yes     = No

flip No      = Yes

flip Unknown = Unknown

data Answer = Yes | No | Unknown

we can define:

Values of new types can be used in the same ways 
as those of built in types.  For example, given 
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The constructors in a data declaration can also have 
parameters.  For example, given

data Shape = Circle Float

| Rect Float Float

square :: Float  Shape

square n = Rect n n

area :: Shape  Float

area (Circle r) = pi * r^2

area (Rect x y) = x * y

we can define:
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Note:

z Shape has values of the form Circle r where r is 
a float, and Rect x y where x and y are floats.

z Circle and Rect can be viewed as functions that 
construct values of type Shape:

Circle :: Float  Shape

Rect :: Float  Float  Shape
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Not surprisingly, data declarations themselves can 
also have parameters.  For example, given

data Maybe a = Nothing | Just a

safediv :: Int  Int  Maybe Int

safediv _ 0 = Nothing

safediv m n = Just (m `div` n)

safehead :: [a]  Maybe a

safehead [] = Nothing

safehead xs = Just (head xs)

we can define:



Recursive Types
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In Haskell, new types can be declared in terms of 
themselves.  That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors 
Zero :: Nat and Succ :: Nat  Nat.
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Note:

z A value of type Nat is either Zero, or of the form 
Succ n where n :: Nat.  That is, Nat contains the 
following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)
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z We can think of values of type Nat as natural 
numbers, where Zero represents 0, and Succ 
represents the successor function 1+.

z For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0)) 3=
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Using recursion, it is easy to define functions that 
convert between values of type Nat and Int:

nat2int :: Nat  Int

nat2int Zero     = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int  Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))



15

Two naturals can be added by converting them to 
integers, adding, and then converting back:

However, using recursion the function add can be 
defined without the need for conversions:

add :: Nat  Nat  Nat

add m n = int2nat (nat2int m + nat2int n)

add Zero     n = n

add (Succ m) n = Succ (add m n) 
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For example:

add (Succ (Succ Zero)) (Succ Zero)

Succ (add (Succ Zero) (Succ Zero))

=

Succ (Succ (add Zero (Succ Zero))

=

Succ (Succ (Succ Zero))

=

Note:

z The recursive definition for add corresponds to 
the laws 0+n = n and (1+m)+n = 1+(m+n).



Arithmetic Expressions
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Consider a simple form of expressions built up from 
integers using addition and multiplication.

1
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Using recursion, a suitable new type to represent 
such expressions can be declared by:

For example, the expression on the previous slide 
would be represented as follows:

data Expr = Val Int

| Add Expr Expr

| Mul Expr Expr

Add (Val 1) (Mul (Val 2) (Val 3))
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Using recursion, it is now easy to define functions 
that process expressions.  For example:

size :: Expr  Int

size (Val n)   = 1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y 

eval :: Expr  Int

eval (Val n)   = n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y
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Note:

z The three constructors have types:

Val :: Int  Expr

Add :: Expr  Expr  Expr

Mul :: Expr  Expr  Expr

z Many functions on expressions can be defined 
by replacing the constructors by other functions 
using a suitable fold function.  For example:

eval = folde id (+) (*)



Binary Trees
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In computing, it is often useful to store data in a 
two-way branching structure or binary tree.
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Using recursion, a suitable new type to represent 
such binary trees can be declared by:

For example, the tree on the previous slide would 
be represented as follows:

data Tree a = Leaf a

| Node (Tree a) a (Tree a)

t :: Tree Int

t = Node (Node (Leaf 1) 3 (Leaf 4)) 5

(Node (Leaf 6) 7 (Leaf 9))
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We can now define a function that decides if a given 
value occurs in a binary tree:

occurs :: Ord a  a  Tree a  Bool

occurs x (Leaf y)     = x == y

occurs x (Node l y r) = x == y

|| occurs x l

|| occurs x r

But… in the worst case, when the value does not 
occur, this function traverses the entire tree.
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Now consider the function flatten that returns the 
list of all the values contained in a tree:

flatten :: Tree a  [a]

flatten (Leaf x)     = [x]

flatten (Node l x r) = flatten l

++ [x]

++ flatten r

A tree is a search tree if it flattens to a list that is 
ordered.  Our example tree is a search tree, as it 
flattens to the ordered list [1,3,4,5,6,7,9].
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Search trees have the important property that when 
trying to find a value in a tree we can always decide 
which of the two sub-trees it may occur in:

This new definition is more efficient, because it only 
traverses one path down the tree.

occurs x (Leaf y)              = x == y

occurs x (Node l y r) | x == y = True

| x < y  = occurs x l

| x > y  = occurs x r



Exercises
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(1) Using recursion and the function add, define a 
function that multiplies two natural numbers.

(2) Define a suitable function folde for expressions, 
and give a few examples of its use.

(3) A binary tree is complete if the two sub-trees of 
every node are of equal size.  Define a function 
that decides if a binary tree is complete.


