PROGRAMMING IN HASKELL

Chapter 8 - Declaring Types and Classes

Type Declarations

In Haskell, a new name for an existing type can be defined using a type declaration.
type String = [Char]

String is a synonym for the type [Char].

Type declarations can be used to make other types easier to read. For example, given

```
type Pos = (Int,Int)
```

we can define:

$$
\begin{aligned}
& \text { origin : : Pos } \\
& \text { origin }=(0,0) \\
& \text { 1eft : : Pos } \rightarrow \text { Pos } \\
& \text { 1eft }(x, y)=(x-1, y)
\end{aligned}
$$

Like function definitions, type declarations can also have parameters. For example, given

```
type Pair a = (a,a)
```

we can define:

$$
\begin{aligned}
& \text { mult }:: \text { Pair Int } \rightarrow \text { Int } \\
& \text { mult }(m, n)=m * n \\
& \text { copy }:: a \rightarrow \text { Pair } a \\
& \text { copy } x=(x, x)
\end{aligned}
$$

Type declarations can be nested:

$$
\begin{aligned}
& \text { type Pos }=\text { (Int,Int) } \\
& \text { type Trans }=\text { Pos } \rightarrow \text { Pos }
\end{aligned}
$$

However, they cannot be recursive:
type Tree $=$ (Int,[Tree])

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.
data Bool = False | True

Bool is a new type, with two new values False and True.

Note:

z The two values False and True are called the constructors for the type Bool.
z Type and constructor names must always begin with an upper-case letter.
z Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.

Values of new types can be used in the same ways as those of built in types. For example, given

data Answer = Yes | No | Unknown

we can define:

```
answers :: [Answer]
answers = [Yes,No,Unknown]
flip :: Answer }->\mathrm{ Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown
```

The constructors in a data declaration can also have parameters. For example, given

```
data Shape = Circle Float
    | Rect Float Float
```

we can define:

```
square :: Float }->\mathrm{ Shape
square n = Rect n n
area :: Shape -> Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y
```


Note:

z Shape has values of the form Circle r where r is a float, and Rect $x y$ where x and y are floats.
z Circle and Rect can be viewed as functions that construct values of type Shape:

```
Circle :: Float -> Shape
Rect :: Float }->\mathrm{ Float }->\mathrm{ Shape
```

Not surprisingly, data declarations themselves can also have parameters. For example, given

data Maybe a = Nothing | Just a

we can define:

```
safediv :: Int }->\mathrm{ Int }->\mathrm{ Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)
safehead :: [a] -> Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)
```


Recursive Types

In Haskell, new types can be declared in terms of themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors Zero :: Nat and Succ :: Nat \rightarrow Nat.

Note:
z A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values:

Zero

Succ Zero
Succ (Succ Zero)
z We can think of values of type Nat as natural numbers, where Zero represents 0, and Succ represents the successor function $1+$.
z For example, the value

Succ (Succ (Succ Zero))

represents the natural number

$$
1+(1+(1+0))=3
$$

Using recursion, it is easy to define functions that convert between values of type Nat and Int:

```
nat2int :: Nat -> Int
nat2int Zero = 0
nat2int (Succ n) = 1 + nat2int n
int2nat :: Int -> Nat
int2nat 0 = Zero
int2nat n = Succ (int2nat (n-1))
```

Two naturals can be added by converting them to integers, adding, and then converting back:

```
add :: Nat }->\mathrm{ Nat }->\mathrm{ Nat
add m n = int2nat (nat2int m + nat2int n)
```

However, using recursion the function add can be defined without the need for conversions:

```
add Zero
    n = n
add (Succ m) n = Succ (add m n)
```

For example:

```
add (Succ (Succ Zero)) (Succ Zero)
    Succ (add (Succ Zero) (Succ Zero))
    Succ (Succ (add Zero (Succ Zero))
    Succ (Succ (Succ Zero))
```

Note:
z The recursive definition for add corresponds to the laws $0+n=n$ and $(1+m)+n=1+(m+n)$.

Arithmetic Expressions

Consider a simple form of expressions built up from integers using addition and multiplication.

Using recursion, a suitable new type to represent such expressions can be declared by:

$$
\begin{aligned}
\text { data Expr } & =\text { Val Int } \\
& \text { | Add Expr Expr } \\
& \text { Mul Expr Expr }
\end{aligned}
$$

For example, the expression on the previous slide would be represented as follows:
Add (Val 1) (Mul (Val 2) (Val 3))

Using recursion, it is now easy to define functions that process expressions. For example:

$$
\begin{aligned}
& \text { size : : Exp } \rightarrow \text { Int } \\
& \text { size (Val } n \text {) }=1 \\
& \text { size (Add } x y)=\text { size } x+\text { size } y \\
& \text { size (Mut } x y)=\text { size } x+\text { size } y \\
& \text { eva : : Expr } \rightarrow \text { Int } \\
& \text { eva (Val } n)=n \\
& \text { eva (Add } x y)=\text { eva } x+\text { eva } y \\
& \text { eva }(M u 1 x y)=\text { eva } x * \text { eva } y
\end{aligned}
$$

Note:

z The three constructors have types:

```
Va1 :: Int -> Expr
Add :: Expr }->\mathrm{ Expr }->\mathrm{ Expr
Mul :: Expr }->\mathrm{ Expr }->\mathrm{ Expr
```

z Many functions on expressions can be defined by replacing the constructors by other functions using a suitable fold function. For example:
eval = folde id (+) (*)

Binary Trees

In computing, it is often useful to store data in a two-way branching structure or binary tree.

Using recursion, a suitable new type to represent such binary trees can be declared by:

```
data Tree a = Leaf a
    Node (Tree a) a (Tree a)
```

For example, the tree on the previous slide would be represented as follows:

```
t :: Tree Int
t = Node (Node
    (Node (Leaf 6) 7 (Leaf 9))
```

We can now define a function that decides if a given value occurs in a binary tree:

$$
\begin{aligned}
\begin{aligned}
\text { occurs : Ord } a \Rightarrow a \rightarrow & \text { Tree } a \rightarrow \text { Boo } 1 \\
\text { occurs } x \text { (Leaf } y) & \\
\text { occurs } x \text { (Node } 1 \text { y } r)= & x==y \\
\text { occurs } & \\
& |\mid \text { occurs } x \\
& |\mid \text { occurs } x ~ r
\end{aligned}
\end{aligned}
$$

But... in the worst case, when the value does not occur, this function traverses the entire tree.

Now consider the function flatten that returns the list of all the values contained in a tree:

$$
\begin{aligned}
\text { flatten }: \text { : Tree } a \rightarrow & {[a] } \\
\text { flatten }(\text { Leaf } x) \quad & {[x] } \\
\text { flatten (Node } 1 \times r)= & \text { flatten } 1 \\
& ++[x] \\
& ++ \text { flatten } r
\end{aligned}
$$

A tree is a search tree if it flattens to a list that is ordered. Our example tree is a search tree, as it flattens to the ordered list [1,3,4,5,6,7,9].

Search trees have the important property that when trying to find a value in a tree we can always decide which of the two sub-trees it may occur in:

$$
\begin{array}{ll}
\text { occurs } \times \text { (Leaf } y \text {) } & =x==y \\
\text { occurs } \times \text { (Node } 1 \text { y r) } \mid x==y & =\text { True } \\
\mid x<y & =\text { occurs } \times 1 \\
& \mid x>y=\text { occurs } \times r
\end{array}
$$

This new definition is more efficient, because it only traverses one path down the tree.

Exercises

(1) Using recursion and the function add, define a function that multiplies two natural numbers.
(2) Define a suitable function folde for expressions, and give a few examples of its use.
(3) A binary tree is complete if the two sub-trees of every node are of equal size. Define a function that decides if a binary tree is complete.

