PROGRAMMING IN HASKELL

Chapter 9 - The Countdown Problem

What Is Countdown?

z A popular quiz programme on British television that has been running since 1982.
z Based upon an original French version called "Des Chiffres et Des Lettres".
z Includes a numbers game that we shall refer to as the countdown problem.

Example

Using the numbers

$$
\begin{array}{lllllll}
1 & 3 & 7 & 10 & 25 & 50
\end{array}
$$

and the arithmetic operators

$$
+\quad-\quad * \quad \div
$$

construct an expression whose value is 765

Rules

z All the numbers, including intermediate results, must be positive naturals $(1,2,3, \ldots)$.
z Each of the source numbers can be used at most once when constructing the expression.
z We abstract from other rules that are adopted on television for pragmatic reasons.

For our example, one possible solution is

$$
(25-10) *(50+1)=765
$$

Notes:
z There are $\underline{780}$ solutions for this example.
z Changing the target number to 831 gives an example that has no solutions.

Evaluating Expressions

Operators:

data $0 p=$ Add | Sub | Mul | Div

Apply an operator:

```
apply :: Op -> Int }->\mathrm{ Int }->\mathrm{ Int
app7y Add x y = x + y
app7y Sub x y = x - y
app7y Mul x y = x * y
apply Div x y = x `div` y
```

Decide if the result of applying an operator to two positive natural numbers is another such:

$$
\begin{aligned}
& \text { valid : : Op } \rightarrow \text { Int } \rightarrow \text { Int } \rightarrow \text { Bool } \\
& \text { valid Add _ _ = True } \\
& \text { valid Sub } x \text { y }=x>y \\
& \text { valid Mul _ _ = True } \\
& \text { valid Div x y = x `mod` y == } 0
\end{aligned}
$$

Expressions:

$$
\text { data Expr }=\text { Val Int } \mid \text { App Op Expr Expr }
$$

Return the overall value of an expression, provided that it is a positive natural number:

```
eval :: Expr -> [Int]
eval (Val n) = [n | n > 0]
eval (App o 1 r) = [app7y o x y | x \leftarrow eval 1
, y \leftarrow eval r
, valid o x y]
```

Either succeeds and returns a singleton list, or fails and returns the empty list.

Formalising The Problem

Return a list of all possible ways of choosing zero or more elements from a list:

choices :: [a] \rightarrow [[a]]

For example:

$$
\begin{aligned}
& \text { > choices }[1,2] \\
& {[[],[1],[2],[1,2],[2,1]]}
\end{aligned}
$$

Return a list of all the values in an expression:

```
values :: Expr }->\mathrm{ [Int]
values (Val n) = [n]
values (App _ 1 r) = values 1 ++ values r
```

Decide if an expression is a solution for a given list of source numbers and a target number:
solution :: Expr \rightarrow [Int] \rightarrow Int \rightarrow Bool solution e ns $n=$ elem (values e) (choices ns) \&\& eval $e==[n]$

Brute Force Solution

Return a list of all possible ways of splitting a list into two non-empty parts:

```
split :: [a] -> [([a],[a])]
```

For example:

$$
\begin{aligned}
& \text { > split }[1,2,3,4] \\
& {[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]}
\end{aligned}
$$

Return a list of all possible expressions whose values are precisely a given list of numbers:

$$
\begin{aligned}
& \text { exprs :: [Int] } \rightarrow \text { [Expr] } \\
& \text { exprs [] = [] } \\
& \text { exprs }[\mathrm{n}]=[\mathrm{Va}] \mathrm{n}] \\
& \text { exprs } n s=[e \mid(1 s, r s) \leftarrow \text { split } n s \\
& \begin{array}{ll}
1 & \leftarrow \text { exprs } 1 \mathrm{~s} \\
, \mathrm{r} & \leftarrow \text { exprs rs } \\
, \text { e } & \leftarrow \text { combine } 1 \mathrm{r}]
\end{array}
\end{aligned}
$$

The key function in this lecture.

Combine two expressions using each operator:

> combine :: Expr \rightarrow Expr \rightarrow [Expr]
> combine $1 \mathrm{r}=$
> [App o $1 \mathrm{r} \mid \mathrm{o} \leftarrow$ [Add, Sub, Mu $],$ Div]]

Return a list of all possible expressions that solve an instance of the countdown problem:

$$
\begin{aligned}
& \text { solutions :: [Int] } \rightarrow \text { Int } \rightarrow \text { [Expr] } \\
& \text { solutions ns } \mathrm{n}=\left[\mathrm{e} \mid \mathrm{ns}{ }^{\prime} \leftarrow\right. \text { choices ns } \\
&, \mathrm{e} \leftarrow \text { exprs ns' } \\
&, \text { eva } \mathrm{e}==[\mathrm{n}]]
\end{aligned}
$$

How Fast Is It?

System: $\quad 2.8 G H z$ Core 2 Duo, 4GB RAM

Compiler:
Example:
One solution: 0.108 seconds
All solutions: 12.224 seconds

Can We Do Better?

z Many of the expressions that are considered will typically be invalid - fail to evaluate.
z For our example, only around 5 million of the 33 million possible expressions are valid.
z Combining generation with evaluation would allow earlier rejection of invalid expressions.

Fusing Two Functions

Valid expressions and their values:

```
type Result = (Expr,Int)
```

We seek to define a function that fuses together the generation and evaluation of expressions:

```
results :: [Int] -> [Result]
results ns = [(e,n) | e \leftarrow exprs ns
    , n \leftarrow eval e]
```

This behaviour is achieved by defining

$$
\begin{aligned}
& \text { results [] = [] } \\
& \text { results }[\mathrm{n}]=[(\mathrm{Val} \mathrm{n}, \mathrm{n}) \mid \mathrm{n}>0 \text {] } \\
& \text { results ns = } \\
& \text { [res | (7s,rs) } \leftarrow ~ s p l i t ~ n s \\
& \text {, 7x } \leftarrow \text { results 1s } \\
& \text {, ry } \leftarrow \text { results rs } \\
& \text {, res } \leftarrow \text { combine' 7x ry] }
\end{aligned}
$$

where

$$
\text { combine' : : Result } \rightarrow \text { Resu7t } \rightarrow \text { [Resu7t] }
$$

Combining results:

$$
\begin{aligned}
& \text { combine' }(1, x)(r, y)= \\
& \text { [(App o } 1 \text { r, apply o x y) } \\
& \text { | o } \leftarrow \text { [Add, Sub, Mum, Div] } \\
& \text {, valid o x y] }
\end{aligned}
$$

New function that solves countdown problems:

$$
\begin{aligned}
& \text { solutions' }::[\text { Int }] \rightarrow \text { Int } \rightarrow \text { [Exp] } \\
& \text { solutions' ns } n= \\
& \qquad \begin{array}{l}
\text { (e } \mid \text { ns' } \leftarrow \text { choices } n s \\
,(e, m) \leftarrow \text { results ns' } \\
, m==n]
\end{array}
\end{aligned}
$$

How Fast Is It Now?

Example: solutions' $[1,3,7,10,25,50] 765$

One solution: 0.014 seconds
Around 10 times faster in both cases.
All solutions: 1.312 seconds

Can We Do Better?

z Many expressions will be essentially the same using simple arithmetic properties, such as:

$$
\begin{aligned}
& x * y=y * x \\
& x * 1=x
\end{aligned}
$$

z Exploiting such properties would considerably reduce the search and solution spaces.

Exploiting Properties

Strengthening the valid predicate to take account of commutativity and identity properties:

$$
\begin{aligned}
& \text { valid : : Op } \rightarrow \text { Int } \rightarrow \text { Int } \rightarrow \text { Boot } \\
& \text { valid Add } x y=x \leq y \\
& \text { valid Sub } x y=x>y \\
& \text { valid Mut } x y=x \leq y \& \& x \neq 1 \& \& y \neq 1 \\
& \text { valid Div } x y=x \text { `mod` } y==0 \& \& y \neq 1
\end{aligned}
$$

How Fast Is It Now?

Example: solutions'' [1,3,7,10,25,50] 765

Valid:
250,000 expressions

Solutions: 49 expressions

Around 16 times less.

One solution: 0.007 seconds

Around 2 times faster.

All solutions: 0.119 seconds

More generally, our program usually returns all solutions in a fraction of a second, and is around 100 times faster that the original version.

